Cell culture is an essential in vitro research tool that aims to recreate physiological processes in a dish to serve multiple purposes. Cell cultures can provide a model for biological investigation, a production unit for valuable cellular components in the biotechnology industry, or as a product themselves as cell therapies. Yet, establishing and maintaining a high-quality cell culture is challenging, with any slight variation in conditions impacting the phenotype, viability, and overall quality of the cell culture.
A quality cell culture lab maintains a high standard of several culture aspects, each with their own unique challenges for researchers to optimise. Although the specific qualities required for a cell culture system will depend on its precise use, such as high growth and metabolism required for recombinant protein production, this article will discuss three cell culture lab requirements that must be prioritised in any scenario: sterility, viability, and reproducibility.
The 3 key components for a quality cell culture
Cell viability and growth
A high growth rate is critical for a quality cell culture as it allows for a suitable timeframe and quantity of cells to conduct experiments. A primary cell culture that lacks the ability to survive and grow in vitro results in a failed experiment from the onset. Even if established, a quiescent or slowly replicating cell culture is largely unusable in most use cases as the quantity of cells required for experimental purpose is unattainable.
This is becoming increasingly challenging as researchers move away from established cell lines, such as the HeLa cell line that was established in 1951 and remains the most widely used cell line today, to culture all and any cell types available, from animal to plant species. Each new primary cell type requires extensive optimisation of experimental set up to establish the culture and then further optimisation to achieve high growth. Challenges include establishing a cell-specific culture medium, suitable vessel type and coating, seeding density, and passaging protocol. A cell culture with a high grow rate provides many cell generations and sufficient time to perform experiments while increasing the yield required for commercial cell products to be profitable.