Due to the increasing use of cell culture methods in research, the production of food and beverages, and the production of active plant compounds for use in medicines, pigments, and flavourings, demand for cell culture has increased dramatically in recent years. The pressure to develop monoclonal antibodies and cell-based vaccines is also contributing to the focus on the industry today.
However, while demand has increased, scaling the processes involved in cell culture while maintaining the quality of the results remains a significant challenge for labs.
In this article, we identify the challenges of scaling cell cultures, different approaches to solving these problems and why eliminating manual steps from the process is so critical today.
The shortcomings of manual cell culture processes
Cell culture has become a major pillar of modern science due to the many uses it affords. Growing cells in vitro allows basic research on disease pathology, provides cellular factories to produce recombinant therapeutic proteins, for production of cell-based therapies within the emerging field of regenerative medicine. The scaling of cell culture processes has remained one of the leading challenges within the biotechnology sector since the first blockbuster biologic of recombinant insulin was produced from cultured Escherichia coli over 40 years ago 1 .